Rotubule lumen rather than targeting the K40-containing loop from the outside of the microtubule. How do acetyltransferase and deacetylase enzymes access K40 residues in the lumen of the microtubule? One possibility is that the enzymes copolymerize with tubulins and thus reside in the interior of the microtubules. Indeed, cellular microtubules have been found to contain electron scattering PHCCC custom synthesis material within their lumens [34]. A second possibility is that enzymes enter post-polymerization via the open plus end of the microtubule and diffuse within the microtubule [23], a scenario unlikely based on luminal MNS site diffusion rates [35] and the fact that cytoplasmic microtubules are primarily acetylated at internal sites rather than at the open plus ends most accessible to cytoplasmic enzymes [33,36]. A third possibility is that enzymes access the microtubule lumen post-polymerization via lateral defects that allow “breathing” within the microtubule lattice and/ or exchange of tubulin subunits [12,24,37?9].Figure 3. K40 acetylation does not directly influence the binding of Kinesin-1 to microtubules. Myc-tagged versions of full-length kinesin-1 heavy chain (myc-KHC) or truncated, constitutively active constructs (1?91 and 1?79) were expressed in COS7 cells. Increasing amounts of cell lysates were used in microtubule binding assays with a constant amount of taxol-stabilized acetylated (blue lines) or deacetylated (red lines) microtubules and AMPPNP. The percentage of kinesin-1 motor copelleting with microtubules was quantified. Graphs indicate the average of four independent experiments. doi:10.1371/journal.pone.0048204.gCryo-EM Localization of Acetyl-K40 on MicrotubulesFigure 4. Monoclonal (6-11B-1) and polyclonal (anti-acetyl-K40) antibodies differ in their ability to recognize deacetylated microtubules in vitro. 18325633 Taxol-stabilized microtubules polymerized from acetylated or deacetylated tubulins were stained immediately (Live) or after fixation with paraformaldehyde (PFA fixed) with A) monoclonal 6-11B-1 antibody (magenta) or B) polyclonal anti-acetyl-K40 antibody (magenta). The total tubulin in each sample was detected with DM1A antibody (green). Scale bars, 20 mm. doi:10.1371/journal.pone.0048204.gOur finding that the K40 acetylation site is located in the microtubule lumen also has important implications for how atubulin acetylation can influence events on the microtubule surface. It seems unlikely that the presence or absence of an acetyl group on the luminal K40 residue directly influences motors and MAPs on the microtubule surface. Indeed, we find that for kinesin-1, altering K40 acetylation alone has no effect on the ability of the motor to bind strongly to microtubule. In a similar study, Walter et al. recently showed that K40 acetylation does not directly affect kinesin-1 1527786 velocity and run length along the microtubule surface [40]. It thus appears that the influence of K40 acetylation on motor-dependent transport events [15?8] is due to additional factors and/or modifications within K40-marked cellular microtubules that are not replicated by alteration of only the K40 acetylation state in vitro. For example, K40 acetylation may cause a conformational change in tubulin structure within cellular microtubules or it could serve as a priming event for further tubulin modifications such as additional acetylation events or other PTMs. Further identification of tubulin PTMs and characterization of their effects alone and in concert will be required.Rotubule lumen rather than targeting the K40-containing loop from the outside of the microtubule. How do acetyltransferase and deacetylase enzymes access K40 residues in the lumen of the microtubule? One possibility is that the enzymes copolymerize with tubulins and thus reside in the interior of the microtubules. Indeed, cellular microtubules have been found to contain electron scattering material within their lumens [34]. A second possibility is that enzymes enter post-polymerization via the open plus end of the microtubule and diffuse within the microtubule [23], a scenario unlikely based on luminal diffusion rates [35] and the fact that cytoplasmic microtubules are primarily acetylated at internal sites rather than at the open plus ends most accessible to cytoplasmic enzymes [33,36]. A third possibility is that enzymes access the microtubule lumen post-polymerization via lateral defects that allow “breathing” within the microtubule lattice and/ or exchange of tubulin subunits [12,24,37?9].Figure 3. K40 acetylation does not directly influence the binding of Kinesin-1 to microtubules. Myc-tagged versions of full-length kinesin-1 heavy chain (myc-KHC) or truncated, constitutively active constructs (1?91 and 1?79) were expressed in COS7 cells. Increasing amounts of cell lysates were used in microtubule binding assays with a constant amount of taxol-stabilized acetylated (blue lines) or deacetylated (red lines) microtubules and AMPPNP. The percentage of kinesin-1 motor copelleting with microtubules was quantified. Graphs indicate the average of four independent experiments. doi:10.1371/journal.pone.0048204.gCryo-EM Localization of Acetyl-K40 on MicrotubulesFigure 4. Monoclonal (6-11B-1) and polyclonal (anti-acetyl-K40) antibodies differ in their ability to recognize deacetylated microtubules in vitro. 18325633 Taxol-stabilized microtubules polymerized from acetylated or deacetylated tubulins were stained immediately (Live) or after fixation with paraformaldehyde (PFA fixed) with A) monoclonal 6-11B-1 antibody (magenta) or B) polyclonal anti-acetyl-K40 antibody (magenta). The total tubulin in each sample was detected with DM1A antibody (green). Scale bars, 20 mm. doi:10.1371/journal.pone.0048204.gOur finding that the K40 acetylation site is located in the microtubule lumen also has important implications for how atubulin acetylation can influence events on the microtubule surface. It seems unlikely that the presence or absence of an acetyl group on the luminal K40 residue directly influences motors and MAPs on the microtubule surface. Indeed, we find that for kinesin-1, altering K40 acetylation alone has no effect on the ability of the motor to bind strongly to microtubule. In a similar study, Walter et al. recently showed that K40 acetylation does not directly affect kinesin-1 1527786 velocity and run length along the microtubule surface [40]. It thus appears that the influence of K40 acetylation on motor-dependent transport events [15?8] is due to additional factors and/or modifications within K40-marked cellular microtubules that are not replicated by alteration of only the K40 acetylation state in vitro. For example, K40 acetylation may cause a conformational change in tubulin structure within cellular microtubules or it could serve as a priming event for further tubulin modifications such as additional acetylation events or other PTMs. Further identification of tubulin PTMs and characterization of their effects alone and in concert will be required.